ANALISIS PENJADWALAN MATA PELAJARAN MENGGUNAKAN ALGORITMA WELCH-POWELL

  • Pramitha Shafika Wicaksono Universitas Diponegoro
  • Kartono Kartono Universitas Diponegoro
Keywords: vertex coloring, Welch-Powel Algorithm, graph

Abstract

At the beginning of each semester, subjects scheduling is always carried out by the curriculum representatives and academic staff. There were several problems that must be avoided in subjects scheduling, these problems were the schedule of teachers who teach one subject at the same time are scheduled in different classes, teachers who teach more than one subject are scheduled in the same class at the same time, teachers who are lack of scheduled for teaching. In the subject of graph theory, there is a concept of graph coloring, one of which is vertex coloring. In vertex coloring, there is a Welch-Powell Algorithm application which produces a color for each vertex. In subject scheduling, it is assumed that the vertex is the subject and the teacher, while the edge is the class. In vertex coloring, graph vertices are colored so that there's no two neighboring vertices have the same color. The aim of this research was to arrange a lesson schedule so that problems do not occur such as clashes between teachers, subjects, and teaching hours. The method used in arranging this lesson schedule used the Welch-Powell Algorithm. The results obtained were using the Welch-Powell Algorithm to produce a lesson schedule every day where if there are two classes that have the same subject, they can meet the same day requirements but come in different hours and get a lesson schedule that has no clash between teachers, subjects, and teaching hours.

References

Bender, E., & Williamson, S. G. (2010). Lists, Decisions and Graphs. With an Introduction to Probability.
Dwi Astuti, Y. (2013). Dasar Teori Graf. Logika Dan Algoritma, (tahun 1736), 2–14.
Handayani, D., Rosely, E., & Mayadewi, P. (2016). Algoritma Welch-Powell Studi Kasus: Kelas X MIPA SMA Negeri 8 Bandung. E-Proceeding of Applied Science, 2(3), 933–935.
Lesmana, N. I. (2017). Penjadwalan Produksi Untuk Meminimalkan Waktu Produksi Dengan Menggunakan Metode Branch And Bound. Jurnal Teknik Industri, 17(1), 42–50. https://doi.org/10.22219/jtiumm.vol17.no1.42-50
Mahmudah, M., & Irawati, T. N. (2018). Aplikasi Pewarnaan Graf Terhadap Pembuatan Jadwal Ujian Semester di Jurusan Pendidikan Matematika Universitas Islam Jember. Mathematics, 1, 1–10.
Masyoyo, D. (2014). Analisa dan Implementasi Algoritma Prioriti Dispatching dalam penjadwalan pembagian ruangan ujian. Informasi Dan Teknologi Ilmiah, 2.
Munir, R. (2014). Matematika Diskrit (Revisi Kel). Bandung: Penerbit Informatika.
Niarma, Pramono, B., & Tajidun, L. (2018). Aplikasi penjadwalan menggunakan algoritma welch powell (studi kasus : sma muhammadiyah kendari). semanTIK, 4(1), 1–6.
Nurdiana, I. (2020). Perbedaan Penelitian Kuantitatif Dan Kualitatif, 2017–2019. https://doi.org/10.31219/osf.io/t2d7x
Pasnur, P. (2012). Implementasi Algoritma Welch-Powell dalam Pembuatan Jadwal Ujian Akhir Semester. Inspiration : Jurnal Teknologi Informasi Dan Komunikasi, 2(1), 35–44.
Puspasari, D. T. (2015). Pewarnaan Titik pada Graf Khusus : Operasi dan Aplikasinya Pendahuluan Metode Penelitian Hasil Penelitian, 3, 1–6.
Putra, D. P., & Riadi, I. (2014). Media Pembelajaran Penjadwalan Proses Berbasis Multimedia untuk Memudahkan Pemahaman Mahasiswa pada Mata Kuliah Sistem Operasi. Jurnal Sarjana Teknik Informatika, 2(3), 84–91. https://doi.org/10.12928/jstie.v2i3.2878
Ramlah, Hasmawati, & Lawi, A. (2013). Pengembangan Algoritma Baris untuk Pewarnaan Graf. Retrieved from http://pasca.unhas.ac.id/jurnal/files/256bc5ac80b2296a34330403e07c8c4d.pdf
Supiyandi, & Eka, M. (2018). Penerapan Teknik Pewarnaan Graph Pada Penjadwalan Ujian Dengan. Jurnal Ilmu Komputer Dan Informatika, 03(01), 58–63.
Syakur, A. (2004). Pewarnaan Graf. Retrieved from http://rifki_kosasih.staff.gunadarma.ac.id/Downloads/files/37597/PEWARNAAN+GRAF.pdf
Published
2020-10-27
Abstract viewed = 161 times
PDF downloaded = 92 times